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REMARKS ON CURVATURE AND
THE EULER INTEGRAND

ALAN WEINSTEIN

1. Review of the problem

We define an n-dimensional curvature tensor as an n'-tuple R = (Ryx1),
1 <i,j,k, 1 < n, of real numbers satisfying the symmetry relations

( 1) Rijkl = ‘_'Rjikl = Rchij 5
and
(2) Rijkl + Riklj + Riljk =0 ’

and we denote the vector space of all such curvature tensors by K”.
The polynomial function y**: K*® — R defined by the formula

in(R) = (_1)77. ZZJI Eilu-izneh--'janiﬂzhjz' . 'Rizn—-liznjzn—ljzn

will be called the Euler integrand in dimension 2r since, by the generalized
Gauss-Bonnet theorem, the Euler characteristic of an oriented riemannian
manifold M of dimension 2x is obtained, up to a positive constant, by evaluat-
ing ¥** on the components of the curvature tensor in orthonormal frames and
integrating the resulting real valued function over M, using the volume element
associated with the given riemannian metric.

It has been conjectured by H. Hopf that the Euler characteristic of an even
dimensional riemannian manifold with positive sectional curvature is positive,
and it may even be the case that the Euler integrand is positive in this situation.
The present note is devoted to the presentation of some remarks on this ques-
" tion. We continue by fixing some more terminology.

The polynomial function ¢*: K* X R® X R® — R defined by the formula

"R, x,y) = — 3, Ryjuixyxey,

may be called the sectional curvature function, since ¢"(R,x,y) is, up to a
positive constant, the sectional curvature of the plane spanned by x and y,
computed from the curvature tensor R. Of course, x and y really span a plane
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if and only if a"(x,y) # 0, where a™: R® X R™ — R is the polynomial function
defined by

a™(x,y) = ;] (xy; — x9.)° .
»J

R is called positive sectional if ¢™(R, x,¥) > 0 whenever a™(x,y) = 0.

The conjecture, “if R ¢ K*» is positive sectional, then y**(R) > 0” will be
denoted by #**. %*is trivially true, and %* has been proven by Milnor and
Chern [1].

2. First remark on the conjectures %"

Theorem 1. For each n, there is a finite decision procedure for determining
whether €*" is true.

The proof of Theorem 1 depends on a deep result of Seidenberg and Tarski
concerning semi-algebraic sets, a subset of a vector space being called semi-
algebraic if it is generated by unions and intersections from the solution sets of
a finite number of polynomial eguations and inequalities. The Seidenberg-
Tarski theorem states that, if 7 and W are vector spaces, then the projection
onto V' of a semi-algebraic subset of V' X W is a semi-algebraic subset of V.
The proof [2] of this theorem gives a finite procedure for constructing the
equations and inequalities defining the projection from those defining the origi-
nal set. Unfortunately, the procedure is too long to be used in practice even
with the aid of a computer, so the conjectures %** should remain of interest to
geometers and algebraists.

Proposition 1.  The set P" of positive sectional n-dimensional curvature
tensors is semi-algebraic in K*.

Proof. Let §® © K" X R* X R” be the semi-algebraic set

{R,x,y)[a"(x,y) = 0 and o"(R,x,y) < O},

whose projection onto K" is the complement of P*. By the Tarski-Seidenberg
theorem and the obvious fact that the complement of a semialgebraic set is
semialgebraic, P" is semialgebraic. q.e.d.

Proposition 1 implies that there exist finitely many polynomial inequalities in.
in the R;;;,’s such that, given any curvature tensor, one could determine
whether it is positive sectional by evaluating the polynomials and checking
whether the results satisfy the inequalities. (There are no equations, because,
as is easily verified, P* is an open subset of K”.) It would be useful to know
these inequalities explicitly. They could be used, for example, in a computer
procedure to generate a random sample of the elements of P*#, on which y**
could be evaluated for an empirical test of €*".

Proof of Theorem 1. Let T* C R X K** be the set
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{(0,R)|Re P and y(R) < 0} .

T** being semialgebraic, so is its projection U** onto R°, which is empty if and
only if ¥** is true. But one may decide by checking a finite number of poly-
nomial inequalities, derivable in a finite number of steps from the data of the
problem, whether the unique element O of R® lies in U*".

3. The importance of the Bianchi identity

An n*-tuple R satisfying the relations (1) of § 1 will be called a generalized
curvature tensor, whether or not it satisfies the Bianchi identities (2). We denote
the space of all generalized curvature tensors by K. All the functions and defini-
tions in the previous paragraphs extend in the obvious way to K”, and there is
a corresponding sequence of conjectures &, _

First, we observe that the Chern-Milnor proof of #* is even a proof of #*
(i.e., the Bianchi identity is never used), and that @ is trivially true. The fol-
lowing result suggests the source of some of the difficulty in proving #** for
n>2.

Theorem 2. %* is false for n > 2.

Proof. Let R e K** be defined by the formulas

(3) R, = —R,3y = — R, = Ry, = —1,

(4) Ry, = ~Rg,= —Rypn =Ry =1,

(5) R,y = — Ry = —Rys = Rygse = — 1,

(6) Ry oo = —Ropowormor,e = —Rox_rokoe-1 = —1,
fora<K<n,

(7) Riiu=0, for all other values of i,j, &,1 .

It is not hard to see that the part of R coming from (3), (4), and (5) con-
tributes nothing to sectional curvature. What is left is the curvature tensor of
the product of a 6-dimensional flat space and (n — 3) 2-dimensional spaces of
~ positive curvature, so R is non-negative sectional. (We will make it positive in
a moment.)

Now all the non-vanishing terms in y**(R) may be shown to be equal, by
even permutations of the indices, to

(— l)n : R1234R3456R5612R7878 tre Rzn—l,zn,zn—un H

which equals (—1)*-(—1)-1.(=1) . (=" *=(—~1)**"' = —1, so that y**(R)
is negative.
Letting S be any positive sectional curvature tensor (for instance, the one for
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constant sectional curvature), we write R, for R 4 §-S. Since the function ¢ is
linear in its first argument, R, is positive sectional for 6 > 0. For § sufficiently
small, the continuity of y implies that y(R;) < 0, and R, is a counterexample
to ¢,
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